Behauptung: Für alle $n \in \mathbb{N}$ gilt $(n+10)^4 < 2^{n+10+\sqrt{n+10}}$.

Beweis

Die Behauptung ist äquivalent mit

$$\bigwedge_{k \in \mathbb{N}} (k \ge 11 \quad \Rightarrow \quad k^4 < 2^{k + \sqrt{k}}),$$

und dies wird durch vollständige Induktion gezeigt.

Induktionsanfang: Für k=11 gilt $11^4=14641<16384=2^{14}<2^{11+\sqrt{11}}$. Induktionsschritt: Für ein $k\in\mathbb{N}$ gelte $k\geq 11$ \Rightarrow $k^4<2^{k+\sqrt{k}}$.

Zu zeigen: Dann gilt auch $(k+1)^4 < 2^{k+1+\sqrt{k+1}}$

$$\begin{array}{ll} 2^{k+1+\sqrt{k+1}} &>& 2^{k+1+\sqrt{k}} \\ &=& 2\cdot 2^{k+\sqrt{k}} \\ &>& 2\cdot k^4 \\ &\geq& (k+1)^4 \quad \text{für jedes } k\in \mathbb{N} \text{ mit } k\geq 11; \end{array}$$

denn die letzte Ungleichheit gilt wegen

$$\bigwedge_{k \in \mathbb{N}} (k \ge 6 \quad \Rightarrow \quad 2k^4 > (k+1)^4),$$

und dies ist wiederum äquivalent mit

$$\bigwedge_{k \in \mathbb{N}} (k \ge 6 \quad \Rightarrow \quad (k+1)^2 < \sqrt{2} \cdot k^2),$$

wie nochmals durch vollständige Induktion gezeigt wird.

Induktionsanfang: $(6+1)^2 = 7^2 = 49 < 50, 4 = 6^2 \cdot \frac{14}{10} < 6^2 \sqrt{2}$.

Induktionsschritt: Für ein $k \in \mathbb{N}$ gelte $k \ge 6 \implies (k+1)^2 < \sqrt{2} \cdot k^2$.

Zu zeigen: Dann gilt auch $(k+1)^2 < \sqrt{2}(k+1)^2$.

$$(k+2)^{2} = ((k+1)+1)^{2}$$

$$= (k+1)^{2} + 2(k+1) + 1$$

$$< \sqrt{2} \cdot k^{2} + (2k+3)$$

$$< \sqrt{2} \cdot k^{2} + (2\sqrt{2} \cdot k + \sqrt{2}) \qquad (*)$$

$$= \sqrt{2}(k^{2} + 2k + 1)$$

$$= \sqrt{2}(k+1)^{2}.$$

Begründung von (*): $2k+3 < 2\sqrt{2} \cdot k + \sqrt{2}$ \Leftrightarrow $3-\sqrt{2} < 2k(\sqrt{2}-1)$, und die rechte Ungleichung gilt wegen

$$3 - \sqrt{2} < \frac{8}{5} < 2k \cdot \frac{2}{5} < 2k(\sqrt{2} - 1)$$

für beliebiges $k \in \mathbb{N}$ mit $k \geq 3$. Damit ist alles bewiesen.